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Notes
on rotating turbulence

By O. Zeman

1. Motivations and objectives

The purpose of this work was to investigate the turbulent constitutive relation

when turbulence is subjected to solid body rotation. Rotating turbulent flows exist

in many industrial and geo- and astrophysical applications.

2. Accomplishments

2.1 Note on spectra and decay of rotating homogeneous turbulence

Recently, Squires, Chasnov, Mansour, & Cambon (1993) (hereon SCMC) ad-

dressed the problem of asymptotic behavior of homogeneous turbulence. Briefly, to

summarize their results and findings, they applied a spectral LES method to achieve

an asymptotic, equilibrium evolution of initially isotropic turbulence subjected to

solid body rotation of angular speed ft. The computations, which were run for

times of order O(103 ) of initial turbulence time scales, confirmed the prediction of

the asymptotic decay laws. The authors used two different (initial) spectral forms

of the energy spectrum E(k) at low wavenumber k:

E(k) = 2_rk2Ao + .... and E(k) = 27rk4A2 + ....

In nonrotating turbulence the two spectral forms are known to produce different

time decay exponents (n) of the turbulent kinetic energy ½q2 = f_ E(k)dk o¢ t-".

For the k 2 spectrum, n = 6/5, and for the k 4 spectrum, n = 10/7. In the presence

of rotation the following asymptotic decay laws were proposed in SCMC:

q2 2/5-3/5 3/5A o t fl (k 2 spectrum) (1)

q2 oc A_/_ t-5/rfl 5/_ (k 4 spectrum) (2)

The above laws were confirmed by the LES computations within a few percent.

Computations also indicated that the rotating turbulence has a tendency toward

a two-dimensional state in the sense that the spectral energy tends to concentrate

at wavenumbers normal to the rotation axis, i.e. the gradients with respect to the

wavenumber parallel to n become relatively small. At the same time the turbulence

remained remarkably close to isotropy if measured by departure from the isotropy

tensor bij =< uiuj >/q2 _ 1/360. This suggests a turbulence structure consisting

of vortices aligned with the rotation axis and of jet-like (fluctuating) flow parallel

to the rotation axis.

The purpose of this note is to explain the behavior of the rotating turbulence on

the basis of a model for the spectral energy transfer, and to propose modification
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of the turbulence spectrum when the rotation is much more rapid than the eddy

turnover time scale. We start with a simplified Lagrangian description of the relation

between stress and mean strain in rotating turbulence. The resulting relationship is

then used to describe the energy transfer from larger to smaller scales in the spirit

of the analysis described in Tennekes & Lumley (1972) for nonrotating turbulence.

Denoting Lagrangian fluctuating velocity components by vi and taking the ro-

tation vector to be f_ = (0, 0, ft), one can write equations for the motion of fluid

particles originating at some point in space and time (ao, to) as follows:

dvi

-- vjUi,j + 2eijsflvj + Hi (3)
dt

Here, Ui represents a background mean velocity field which is considered as slow

varying with respect to the characteristic Lagrangian (turbulence) time scale rL

and length scale (oc qrL). II_a are random forcing terms comprising the effect of

the fluctuating pressure and higher order correlations. The viscous terms are taken

to be negligible on account of the high turbulence Reynolds number assumption

(Rey cx q2rL/U >> 1). The velocities vi are functions of position and time vi(X, t)

of the fluid particle, with the initial position X(to) = a_. Because turbulence

is statistically homogeneous, we shall suppress the space dependence and utilize

the ensemble-average identity < vivj > (t) =< uiuj > (t), i.e., the one-point

Lagrangian averages (over all initial locations) are equal to the Eulerian averages

(over the flow volume). A useful reference for Lagrangian description of turbulence

is Monin & Yaglom (1971).

Now, neglecting the effect of Hi and assuming that the gradients Ui,a of the

slow-varying velocity field (in the rotation direction) are negligible, it is possible to

formulate a stress-straln relation < vlv2 >_ -$12 (Sij -_ ½(Ui,j "Jr- Uj,i) is the slow

strain tensor). This is achieved first by integrating (3) to obtain expressions for

Ol_ V2:

vj(t')dt' + 2ft /t
Jto

t

9f_
-. f.

Further manipulations yield an expression

1 2
_q rL

< vlv2 >=< ulu2 >= --[cl 1 + 4c2r_f_(2f_ -- Ra2) ]2S12 = -2UTSI2.
(4)

2 >-1 e_Here, all the required Lagrangian time scales such as TL_ =< v_ f_ <

v_(t')v_(to) > dr' were written for simplicity as a single time scale rL, which is in

turn proportional to the turbulence time scale g/u' (g and u' being characteristic

length and velocity scales); Rij is the asymmetric complement to Sit. The presumed

differences in timescale magnitudes are absorbed in the free constants ci. Clearly, (4)

expresses a turbulent constitutive relation in the presence of rotation; the effective
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eddy viscosity VT is evidently diminished by a factor depending on (7L_) 2. Although

in the following analysis the flow field represented by Sij and Rij is taken as random,

it is of interest to interpret (4) considering a homogeneous rotating shear flow with
=1 U$12 = R12 _ 1,2 ½S. Then we note that the nature of the constitutive relation

(4) is such that VT is maximized for (fl/S)ma, = 0.125. On the other hand, the
LES results of Bardina et al. (1985) and linear stability analysis (see e.g. Speziale,

1991) indicate the maximum turbulence amplification at (fl/S)ma, = 0.25. Since

in the following analysis R12 is neglected, the exact value of (fl/S)ma, is irrelevant
to our problem. A stress-strain relation analogous to (4) has also been derived in

cylindrical coordinates for a turbulent line vortex by Zeman (1994a) (comparable
when the vortex flow is in solid body rotation i.e. when Ua_i,,,,,th = rfl).

Now we shall relax the relation in (4) so that $12 = S(k') represents the strain

of eddies (of size o¢ 1/k') larger than the wavenumber k of the stress < ulu2 > (k).

Following the line of reasoning in Tennekes & Lumley (Section 8.4) concerning the

spectral transfer in nearly isotropic turbulence, the spectral energy flux T(k) across
the wavenumber k in the inertial subrange is effected mainly by local interaction

so that T(k) oc -Sij(k') < uiuj(k") >o¢ vT(k")S2(k ') where, approximately, k/3 <
k t < k and k" = 3k *. As shown in Tennekes & Lumley, the quantities at k _ or k"

aredirectly related to the same quantities at k, thus e.g., S(k') o¢ (E(k)k3) 1/2 o¢

rLl(k"). Utilizing (4) to express T(k) in terms of quantities (depending now on
E(k), k, _2) and neglecting the contribution flR_2 in (4) (R_2(k) is a random
quantity with zero mean and [R121 << fl), we obtain a relationship

(Ek)a/2k
T(k)  T(k")S2(k ') a, •

1 + c3 :E_-_

In the inertial subrange the spectral energy flux T(k) across each wavenumber is

constant and equal to the dissipation e, and the above equation can be written as

e = _-312 (Ek) 3/2k ,
I + c3 _k-_

where a is the Kolmogorov constant and c3 is another free coefficient. Evidently,

(5) represents an implicit relation for the energy spectrum E(k, e, fl) = 0 in the
presence of rotation. For more insight into the meaning of (5), it is useful to define

a rotation (cut-off) wavenumber kQ

(6)

which delimits the region of the spectrum where the rotation effects are impor-

tant, i.e., k < k_; (note that k_ 1 is analogous to the Ozmidov length in stratified

turbulence). In the region where k << kf_, (5) results in an explicit expression

E(k) (x c.215_-_415k-1115, (7)
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FIGURE 1. Sketch of the turbulence energy spectrum subjected to rotation; ko

and k_ are, respectively, the large-eddy and Kolmogorov scale wavenumbers, kfl is

defined in (6).

while for k >> kn the Kolmogorov inertial subrange E(k) = ae2/Sk -5/s is recov-

ered. The sketch of the spectrum (with exaggerated slope change) is depicted in

Fig. 1. A general solution of (5) (with ca = 1) is obtained in the form

y5

x = ( l + 2y + y2 )1/4, (8)

where x = k/ku and y = EkS/fl 2. Fig. 2 shows the solutions of the above equation
emphasizing the rotation-affected range by plotting Ek n/5 and Ek 5/3. It is seen

that the spectrum of the form (7) is approximately valid for k/kf_ < 10 -1 . It should
be noted that expressing the eddy viscosity (in square brackets) in (4) in terms of

spectral quantities at a given k, one obtains

(E/k) 1/2

VT(k) -- 1 + c4/y(k)'
(9)

hence the parameter fl2/EkS is the measure of the damping effect of rotation on

the local eddy viscosity. It is of interest that the same parameter appears in the

expression for the subgrid-scale eddy viscosity in the LES of SCMC. Although the

functional dependence of uT(k) on y is far more complicated, both CSMC and

expression (9) give the same asymptotic dependence UT(k) (x y if y << 1.

If there exists a self-similar spectrum as sketched in Fig. 1 (with ko < ka <<

k,_), then (7) also contains information concerning the turbulence energy decay.
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FIGURE 2. Spectral energy quantities Ek ll/5 (--'--) and Ek 5/a (_ ) vs.

k/kn, based on the solution to (8). par

Assuming a k 4 spectrum for k < ko, then lq2t (x A2(k_),t cx -_, and using (7) one

obtains
q2 c_ t -10/21020/2132/7 (10)

The exponent n = 10/21 is lower than n = 5/7 in (2) derived from the dimensional

analysis in SCMC. If, however, the rotation damping factor in (5) can be generalized

to 1 + c4y -1 cx y-m, one obtains the relation n = 10/(7 + 14m). Hence, to satisfy
the decay exponent n = 5/7 proposed in (2), m must take on the value m = 1/2.

This leads to a spectral form

E(k) k -2,

different from (7). Analogous relations can be obtained for the k2 spectrum to

satisfy (1).
In summary, from Lagrangian analysis a relation between turbulent stress and

strain in rotating homogeneous turbulence was inferred. This relation was utilized

to derive the spectral energy flux and, ultimately, the energy spectrum form. If the
rotation wavenumber ka lies in the inertial subrange, then for wavenumbers less

than kn the turbulence motions are affected by rotation and the energy spectrum

slope is modified. The present findings provide a new insight into the nature of the
rotation effects on turbulence and, needless to say, their confirmation by (numerical)

experiments would be desirable. It may, however, be difficult to experimentally
distinguish the change in the spectral slope around the rotation wavenumber. The

energy decay laws inferred in CSMC and the present results suggest a modification
of the e model equation and eddy viscosity in k - e models. This is a subject of the

following note.
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2.2 A note on the eddy viscosity in rotatin 9 turbulence

A suggested generalization of the expression for the eddy viscosity (in the consti-

tutive relation uiuj = --2VTs'ij + _q ij] in rotating turbulence derived by Zeman
(1994b) (Eq. (4) in preceding Section 2.1) is

I/To

VT _--- 1 + cs_t(flt - eijkRij)r 2" (11)

Here, vyo is the appropriate eddy viscosity for nonrotating flow; otherwise the

notation is as in Section 2.1, i.e., q2 = ujuj is twice turbulent kinetic energy (TKE),

T = q2/,, and Rij = ½(Ui,j - ULi ) is the rotation tensor. The optimal value of the
numerical constant cs was found to be cs _ 0.1.

In homogenous rotating turbulence with shear 5' = OU1/Ox2 = 2R12 and with

the reference frame rotation flj = l_a, (11) reduces to

I/To

vr = 1 + csn(n - s/2)r 2" (12)

For a given value of the rotation-free viscosity VTo and assumed constant value

of the normalized shear Sr = Sq2/,, the eddy viscosity VT is solely a function of

the ratio fl/S and reaches maximum when _/S = 0.25 in agreement with linear

stability analysis. The function VT(fl/S) is symmetric about fl/S = 0.25 and falls

off rapidly with increasing departure from 0.25. With the (tested) value of Sr = 12,
VT decreases by a factor of 14 as _/5" changes from 0.25 to 0.25+0.75.

Apart from the eddy viscosity, the rotation also affects the Kolmogorov energy

cascade and therefore the rate of dissipation. The author proposed a correction to

the e equation to represent this effect (reported also in Hadid, Mansour & Zeman

1994). In the case of purely decaying turbulence subjected to rotation, the modified
equation is

_2

0e _/3 (13)

where/3 is now a function of the rotation parameter o., = ]f_lr, in the following way

5 09 2

/3 = 3.7+ 3 1 +w 2" (14)

In this formulation, (13) satisfies the decay law Oq2/Ot o_ t-" so that the energy
decay exponent n is 1.2 when 0a = 0 and n = 0.6 when w >> 1. The latter value

is based on the asymptotic decay of rotating turbulence inferred from the scaring

analysis and LES results of Squires et al. (1993) (when the energy spectrum E(k)

at the large scale end behaves as E oc k4). The form of the function (14) has been

based on the analysis of Zeman (1994b). The model-experiment comparison for

rotating decaying turbulence using (13) and (14) is shown in Fig. 3. The data are

from the experiment of Wigeland & Nagib (1978).
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FIGURE 3. Decay of rotating turbulence; model-experiment comparison. Data
points are from Wigeland & Nagib (1978). f_-0 = 0.12 (--),0.47 ( .... ), 70.0

(-----); nvo = 0.12 (-), 0.47 (-), and 70.0 (e).
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FIGURE 4. Shear-driven turbulence with rotation: k-e model prediction (with

modified viscosity in (12)); cross-hatched areas represent roughly the DNS results

of Bardina et at. (1985). ft/S = 0.0 (--), 0.25 ( .... ), 0.5 (------), and-0.5
(----).

3.0_



114 O. Zeman

In the presence of shear S = OU1/Ox2, the relevant k - e model equations are

l c3q_ _p_e, (15)
2_

and (13) changes to

- _(,- 0.75P)_-. (13')&

The TKE production rate P = 4VTSijSij = uTS 2 is determined with the aid of

the modified eddy viscosity in (12); the rotation parameter w in (14) now has to

include the contribution due to the presence of shear, i.e. w 2 = (f}_ - _ijkRij)2T 2 =

(f_ - S/2)2r 2. The results of comparison between the model represented by (13')

and (15) and the DNS results of Bardina et al. (1985) axe presented in Fig. 4. The

trend in the turbulence evolution with varying ft/S is apparently predicted although

the k - e model is incapable of predicting the rapid distortion regime during the

initial development when St < 1. It is noted, however, that the majority of the

Reynolds stress closure models are incapable of reproducing the ft effect on shear

turbulence, particularly for the case of maximum amplification when ft/S = 0.25.
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